Prediction of Drug Combinations by Integrating Molecular and Pharmacological Data

نویسندگان

  • Xing-Ming Zhao
  • Murat Iskar
  • Georg Zeller
  • Michael Kuhn
  • Vera van Noort
  • Peer Bork
چکیده

Combinatorial therapy is a promising strategy for combating complex disorders due to improved efficacy and reduced side effects. However, screening new drug combinations exhaustively is impractical considering all possible combinations between drugs. Here, we present a novel computational approach to predict drug combinations by integrating molecular and pharmacological data. Specifically, drugs are represented by a set of their properties, such as their targets or indications. By integrating several of these features, we show that feature patterns enriched in approved drug combinations are not only predictive for new drug combinations but also provide insights into mechanisms underlying combinatorial therapy. Further analysis confirmed that among our top ranked predictions of effective combinations, 69% are supported by literature, while the others represent novel potential drug combinations. We believe that our proposed approach can help to limit the search space of drug combinations and provide a new way to effectively utilize existing drugs for new purposes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drug-target interaction prediction by integrating chemical, genomic, functional and pharmacological data.

In silico prediction of unknown drug-target interactions (DTIs) has become a popular tool for drug repositioning and drug development. A key challenge in DTI prediction lies in integrating multiple types of data for accurate DTI prediction. Although recent studies have demonstrated that genomic, chemical and pharmacological data can provide reliable information for DTI prediction, it remains un...

متن کامل

PDC-SGB: Prediction of effective drug combinations using a stochastic gradient boosting algorithm.

Combinatorial therapy is a promising strategy for combating complex diseases by improving the efficacy and reducing the side effects. To facilitate the identification of drug combinations in pharmacology, we proposed a new computational model, termed PDC-SGB, to predict effective drug combinations by integrating biological, chemical and pharmacological information based on a stochastic gradient...

متن کامل

Prediction of In Silico ADME Properties of 1,2-O-Isopropylidene Aldohexose Derivatives

Retention behavior of molecules mostly depends on their chemical structure. Retention data of biologically active molecules could be an indirect relationship between their structure and biological or pharmacological activity, since the molecular structure affects their behavior in all pharmacokinetic stages. In the present paper, retention parameters (RM0) of biologically active 1,2-O-isopropyl...

متن کامل

Prediction of In Silico ADME Properties of 1,2-O-Isopropylidene Aldohexose Derivatives

Retention behavior of molecules mostly depends on their chemical structure. Retention data of biologically active molecules could be an indirect relationship between their structure and biological or pharmacological activity, since the molecular structure affects their behavior in all pharmacokinetic stages. In the present paper, retention parameters (RM0) of biologically active 1,2-O-isopropyl...

متن کامل

A Hadoop-Based Method to Predict Potential Effective Drug Combination

Combination drugs that impact multiple targets simultaneously are promising candidates for combating complex diseases due to their improved efficacy and reduced side effects. However, exhaustive screening of all possible drug combinations is extremely time-consuming and impractical. Here, we present a novel Hadoop-based approach to predict drug combinations by taking advantage of the MapReduce ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011